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Abstract

We investigate a new approach for reproducing color images.
Rather than mapping the colors in an image onto the gamut of colors
that can be printed with cyan, magenta, yellow, and black inks, we
choose the set of printing inks for the particular image being repro-
duced. In this paper, we look at the special case of selecting inks for
duotone printing, a relatively inexpensive process in which just two
inks are used. Specifically, the system we describe takes an image
as input, and allows a user to select 0, 1, or 2 inks. It then chooses
the remaining ink or inks so as to reproduce the image as accurately
as possible and produces the appropriate color separations automat-
ically.

CR Categories: I.3.4 [Computer Graphics]: Graphics Utilities

Additional Keywords: color reproduction, color printing, duotone,
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1 Introduction

Modern color reproduction typically employs a fixed set ofprocess-
color inks: cyan, magenta, yellow, and sometimes black. Placed on
top of one another and in juxtaposition, these inks can be used to re-
produce a range of colors, called theirgamut. Although the standard
process colors were carefully chosen to provide a relatively large
gamut, this gamut is nevertheless quite limited when compared to
the full range of colors visible to the human eye. Thus, color fidelity
must generally be compromised when reproducing images with pro-
cess colors (or any other small, fixed set of inks).

A number of approaches have been suggested for mitigating this
problem, including methods for smoothly mapping the original im-
age colors to the process color gamut [21], and, in the case of three-
dimensional computer-synthesized imagery, redefining the original
object colors so that the rendered image will lie inside the process-
color gamut [5]. However, to our knowledge, there has been no re-
search to date on a very different but equally promising approach:
allowing the inks used for printing to be selected for the particular
image being reproduced.

In this paper, we investigate a first step toward this goal: selecting
inks for duotone color reproduction, a less expensive printing pro-
cess in which just two inks are used. In particular, the problem we
address can be stated formally as follows:
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Given: A color image C, a paper color, the set of all
available printing inks I, and a subset of k = 0, 1, or 2
inks in I chosen by the user.

Find: The best 2 � k additional inks for reproducing C
on the selected paper, along with the appropriate color
separations.

While duotones obviously have more limited color gamuts than
three- and four-ink processes, they can nevertheless be used to re-
produce a surprising range of color—especially when the inks are
chosen for the particular image being reproduced, as we show in this
paper. Indeed, a duotone print is really a combination of four colors:
the paper color alone, the colors of each of the inks individually, and
the color of the two inks superimposed on each another. These four
colors define a bilinear surface in color space that may span a broad
range of the full color gamut.

Whereas duotone printing has traditionally been used almost ex-
clusively to enhance monochrome gray-scale images with a tint of
color, the kind of duotone color reproduction we explore in this pa-
per has a variety of new applications. First, duotone printing is sig-
nificantly less expensive than process color, typically about two-
thirds the cost. Thus, there is a clear economic advantage in us-
ing duotones for images that are adequately reproduced in this way.
Second, the general form of the problem expressed above allows a
user to select one or both of the two printing inks. This formula-
tion is useful when other requirements of the page design, such as
matching the precise colors of a company logo, already constrain
the choice of inks. Also, because a large number of printing presses
are two-color presses, printed documents are often designed for just
two inks, generally black (for text) and one additional color. In these
cases, we show how duotone separations can still be computed to
match the colors of an image as well as possible with the inks avail-
able. Finally, our formulation also allows duotone separations to be
computed for a colored paper, which may be useful in a variety of
situations. As one example, this form of the problem could be useful
for creating duotone separations of full-color images for a “yellow
pages” telephone directory.

1.1 Related work

To our knowledge, there has been no previous work that proposes a
general approach to reproducing images using duotones. The most
closely related work in the field of computer graphics addresses the
problem of gamut mapping, or smoothly mapping the colors of an
original image to those available on an output device. Fundamen-
tally, a duotone gamut is much more restricted than the gamut of
a typical output device. Our duotone mapping differs from the ap-
proaches taken by Stoneet al. [21] and Gentile and Allebach [3] pri-
marily in that we require a mapping from three dimensions to two.
Harrington et al. [8] describe a technique for creating a “highlight
color image,” a specialized duotone in which one ink is black.

There are a few articles in the optical engineering literature on cal-
culating halftone separations for inks other than the standard four-
color process inks. Marcu and colleagues [11, 14] describe how to
compute separations when printing with an arbitrary number of inks.
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However, the inks and the order in which they will be printed must
be specified by the user. Furthermore, Marcu et al. do not specify
how to handle a color that is out of gamut (the common case for duo-
tone mapping). Ostromoukhov [16] describes how the traditional
process-color printing gamut can be extended by introducing addi-
tional basic colors.

In the printing industry, a number of empirical studies have de-
veloped improved models for halftone color reproduction [1, 7,
19]. Instead of complicating our duotone mapping with the correc-
tion factors described in these works, we adjust the output of the
model according to our own empirically determined correction fac-
tor. Kang [12] takes a similar approach, though he assumes that
each ink can be corrected independently, while we adjust the duo-
tone gamut as a whole.

1.2 Overview of paper

The remainder of the paper is organized as follows: Section 2 pro-
vides relevant background information on color, color printing, and
the Neugebauer model of halftone printing. Section 3 describes the
duotone mapping in detail, and Section 4 discusses the ink-selection
process. Section 5 describes some variations on duotone printing
that are easily accommodated by our algorithm. Section 6 presents
some actual duotones as well as some rough timing results. We con-
clude in Section 7 with a discussion of possible directions for future
work.

2 Background

Before we dive into the details of our duotone mapping, we present
some background material on color and color spaces, color halftone
printing, and the Neugebauer halftone model.

2.1 Color and color spaces

Color is determined by the intensity of light in the range of visible
wavelengths from about 400nm to 700nm. According to the tris-
timulus theory of color perception [9], all colors can be reproduced
using combinations of three primary wavelengths (roughly corre-
sponding to red, green, and blue). Thus, color can be expressed as
a function of wavelength, known as a spectral reflectance, or as a
three-dimensional quantity. More information about color can be
found in standard graphics texts [2, 4].

The XYZ color space was developed in 1931 by the Commission In-
ternationale de l’Éclairage (CIE) to standardize color specification.
The XYZ color space is additive, meaning that the color resulting
from the superposition of two colored light sources can be calcu-
lated by simply adding the coefficients of the two known colors. A
spectral reflectance can be converted to XYZ coordinates by inte-
grating the spectral information against three functionsx, y and z [2,
pages 579–580]. The computer graphics community is more famil-
iar with the RGB color space, an additive color space that is device-
dependent. Conversion between RGB and XYZ coordinates can be
accomplished by a linear transform if theXYZ coordinates of the de-
vice’s red, green and blue primaries are known [2, pages 585–587].

In contrast to additive color spaces, perceptually uniform color
spaces allow the difference between two colors (as perceived by the
human eye) to be measured as the distance between points. For ex-
ample, two colors c1 and c2 separated by some distance d in a per-
ceptually uniform color space appear about as different as two other
colors c3 and c4 separated by the same distance d. The CIE devel-
oped two perceptually uniform spaces: L�a�b� and L�u�v�. Both
color spaces require the definition of areference white, which is usu-
ally taken to be a standard light source defined by the CIE. In both
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spaces, L� indicates brightness and has a value of 100 for reference
white. Though neither L�a�b� nor L�u�v� is perfectly perceptually
uniform, both come close to satisfying the condition that colors sep-
arated by the same distance appear equally similar [4, pages 59–66].

2.2 Color halftone printing

In color halftone printing, a continuous-tone image is reproduced
by printing a number of versions of the image atop one another.
Each version, known as a halftone separation, consists of various
sized dots of a single ink. Color halftone printing differs from color
dithering on monitors in that subtractive effects as well as additive
effects play a role. The subtractive effect of superimposing dots of
different color produces the set ofprinting primaries for a particular
set of inks. For example, for cyan, magenta, and yellow ink printed
on white paper, the set of printing primaries is cyan, magenta, yel-
low, blue (cyan + magenta), green (cyan + yellow), red (magenta +
yellow), black (cyan + magenta + yellow), and white (no ink). The
additive effect of juxtaposing dots of different sizes produces the en-
tire set, or gamut, of colors that can be achieved by printing halftone
separations using a particular set of inks. Figure 1 illustrates the re-
production of a color image using cyan, magenta, yellow, and black
inks. More information on color reproduction can be found in the
classic texts by Hunt [10] and Yule [23].

2.3 Neugebauer halftone model

In 1937, Neugebauer developed a series of equations that, given ink
and paper colors, describe the amount of each ink needed to repro-
duce a given color [15]. Intuitively, the model says that the overall
color of a small area is a weighted average of the printing primaries,
with each primary weighted by the relative area it covers. For ex-
ample, in a square printed with cyan, magenta and yellow ink on
white paper, the contribution of blue is given by the fraction of the
square that is covered by cyan and magenta but not yellow. If�1,
�2, and �3 are the amounts of cyan, magenta and yellow ink printed,
then the contribution of blue is�1�2(1 � �3).

The “Neugebauer equations” express colors in terms of their coordi-
nates in the XYZ color space. The model was originally designed to
describe three-color printing, though it can be generalized to handle
any number of inks. Let g0 be the color of the paper, gi the color of
ink i on the paper, gi,j the color of inks i and j superimposed on the
paper, gi,j,k the color of all three inks i, j and k superimposed on the
paper, and �i the amount of ink i (between 0 and 1). For three inks,
the Neugebauer model describes c, a color in the printing gamut, in
terms of the eight printing primaries and the amounts of the three
inks required to achieve c:

c =
�

g0 g1 g2 g3 g1,2 g1,3 g2,3 g1,2,3

�
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(1 � �1)(1 � �2)�3
�1�2(1 � �3)
�1(1 � �2)�3
(1 � �1)�2�3
�1�2�3
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3 Duotone mapping

We are now prepared to tackle the following problem: Given 0, 1,
or 2 inks out of a set of available inks, choose the remaining 0, 1, or 2
inks and compute the separations that most accurately reproduce a
given image. In this section we present the duotone mapping, our
technique for computing the separations for an image once the two
inks are known. In Section 4 we will describe the process of choos-
ing inks.



Figure 1 Color halftoning of an image.

3.1 Neugebauer model for duotone printing

For two-color printing, the Neugebauer model describes c, a color
in the printing gamut, in terms of the four printing primaries and the
amounts of the two inks:

c =
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g0 g1 g2 g1,2
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The gamut described by the above equation is a bilinear surface in
an additive color space such as XYZ or RGB, as shown in Figure 2.

Finding the duotone gamut

The duotone gamut is fully specified by the Neugebauer model
given the printing primaries g0, g1, g2 and g1,2. We obtained spec-
tral reflectance data for inks and papers using a ColortronTM spec-
trophotometer. The ColortronTM software also provides data for
PANTONER ink sets. In order to find the printing primaries, we
must estimate the color of inks printed on the selected paper. We
must also estimate the color of two inks superimposed on the se-
lected paper.

We used a simple model to approximate the effect of printing ink on
paper. The data for a layer of ink or paper can be expressed in two
parts: an overall reflectance spectrum R and a Fresnel reflectance
spectrum F. The overall reflectance spectrum indicates how much
light of each wavelength is reflected back by the layer and can be
directly measured with a spectrophotometer. The Fresnel informa-
tion indicates how much light of each wavelength bounces off the
surface without entering the layer.

Inks act very much like filters, which are purely subtractive layers.
A paper acts like an opaque layer. This simple behavior allows us
to approximate layer composition by multiplying reflectance spec-
tra and adjusting for Fresnel effects [6]. To approximate the result
of superimposing a subtractive layer i on another layer j, we remove
the Fresnel component from each layer’s overall reflectance, multi-
ply the altered spectra, and add back the Fresnel reflectance of the
top layer:

Ri,j = (Ri � Fi)(Rj � Fj) + Fi

Fi,j = Fi

Since we cannot directly measure the Fresnel component of re-
flectance, we approximate the Fresnel spectrum of an ink by the re-
flectance spectrum of black ink. The intuition behind this approx-
imation is that black absorbs nearly all incident light; thus, any re-
flectance from a layer of black ink is primarily due to a Fresnel effect
3
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Figure 2 Bilinear surface described by the Neugebauer halftone model.

at the surface. For simplicity, we use the same Fresnel spectrum for
paper, and we ignore any Fresnel effect between ink and paper.

The layering model described above does not completely solve our
problem, as the measured spectral reflectance data for an ink in-
cludes information about the stock paper on which the ink was orig-
inally printed. To compute the result of removing one layer from
another, we simply invert the above equations:

Fi = Fi,j

Ri =
(Ri,j � Fi,j)
(Rj � Fj)

+ Fi

Division by zero does not arise in practice, as we only remove inks
from papers, and the papers have high overall reflectance spectra
and low Fresnel components. Once we have the spectral reflectance
information for the paper, the individual inks on paper, and the com-
bination of both inks on paper, we can find the printing primariesg0,
g1, g2, and g1,2 by first converting the appropriate spectral quantities
to XYZ or RGB coordinates [2, pages 579–587].

3.2 Goals of duotone mapping

The core of our algorithm is the mapping that transforms image col-
ors onto the duotone gamut. There are many characteristics of col-
ors and of sets of colors that one could seek to preserve in design-
ing a mapping. The fundamental tradeoff is between mapping colors
exactly and maintaining overall relationships between colors. Our
approach places more importance on overall relationships than on
exact matches, and weighs certain relationships more heavily than
others.

The basic idea behind our mapping technique is to define an orthog-
onal axis system for each duotone gamut, then transform the im-
age colors along two directions and use parallel projection along the
third. The choice of directions is clearly critical to the effectiveness
of the mapping and corresponds to preserving certain relationships
between image colors at the expense of other relationships. Here are
the choices we made:

1. Preserve relative luminance. The eye is more sensitive to light at
some wavelengths than others. The luminance-efficiency curve,
which describes the relationship between wavelength and vi-
sual sensitivity, corresponds to a direction in a three-dimensional
color space. Preserving separation of image colors along this di-
rection of greatest sensitivity, called the luminance direction, is
the primary goal of our duotone mapping. TheY axis of the XYZ
color space corresponds exactly to the luminance direction [2],
and therefore we take Y to be the direction of our first transfor-
mation. (Stone et al. also used preservation of relative luminance
in their gamut mapping work [21].)

2. Preserve ink-spread separation. The second relationship our
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Figure 3 Axes associated with a typical duotone gamut.

mapping preserves is separation in the direction of most color
variation on the duotone gamut. The curve on the gamut between
the two individual ink primaries describes the widest variation in
color achievable with the selected paper and inks. Thus, the vec-
tor g2 � g1 is the ideal direction for the second transformation.
However, our duotone mapping requires an orthogonal axis sys-
tem, and we have already chosen the Y axis. Therefore we or-
thogonalize g2 � g1 with respect to Y and use the resulting ink-
spread direction S as the direction of the second transformation.

3. Sacrifice normal separation. Separation must be sacrificed in
some direction in order to map points from three-dimensional
space onto a surface. As we have chosen two axes and require
mutual orthogonality, the projection direction P is already de-
fined by Y � S. The P axis approximates the average normal of
the bilinear surface, which is the direction of least color variation
on the gamut. It is therefore a good direction in which to sacrifice
separation.

Given a duotone gamut, the constraints listed above completely de-
fine the orthogonal axis system we will use for our duotone map-
ping. A typical example is illustrated in Figure 3.

3.3 Computing the duotone mapping

The duotone mapping takes image colorsc1, : : : , cn and maps them
to colors ĉ1, : : : , ĉn on the duotone gamut. The mapping of image
color ci takes place in three steps, with each step affecting a differ-
ent orthogonal component of ci. We will denote the components as
follows:

cY
i � ci � Y

cS
i � ci � S

cP
i � ci � P

We will use the same superscript notation to indicate the orthogonal
components of the printing primaries g0, g1, g2 and g1,2.

P
S

Y

Figure 4 Image colors before and after a uniform transformation in
the luminance direction Y.
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3.3.1 Calculating the luminance transformation

The first transformation applied to the image colors is a mapping
along Y to bring all colors within the luminance range of the current
duotone gamut. Although this mapping could be any monotonically
increasing function, for the sake of simplicity we use a linear func-
tion. If we let cY

i be the y-value of the original image color ci, and ĉY
i

the y-value of the transformed color, the luminance transformation
can be written as follows:

ymin = min
i
fcY

i g

ymax = max
i
fcY

i g

ŷmin = maxfymin, minfgY
0 , gY

1 , gY
2 , gY

1,2gg

ŷmax = minfymax, maxfgY
0 , gY

1 , gY
2 , gY

1,2gg

ĉY
i = ŷmin +

�
cY

i � ymin

ymax � ymin

��
ŷmax � ŷmin

�

Figure 4 shows a set of image colors before and after their luminance
values have been transformed to lie within the range of luminance
values available in a typical duotone gamut.

3.3.2 Calculating the ink-spread transformation

The second transformation is along the ink-spread axis S. This
transformation depends upon luminance, since at some luminance
values the duotone gamut is wide and at others it consists of a sin-
gle point. Consider a particular luminance value ŷ between ŷmin
and ŷmax. We define ŝ0 and ŝ1 to be the s-values of the points
found by intersecting the edges of the duotone gamut with a plane
of constant luminance ŷ. The ink-spread transformation at lumi-
nance value ŷ brings the s-values of all image colors with luminance
value ŷ into the range [ŝ0, ŝ1]. Figure 5 illustrates the effect of an
ink-spread transformation on a set of image colors.

In our current implementation, the non-uniformity along Y is han-
dled by separating colors into bins according to y-value and calcu-
lating a different transformation for each bin. The coherence among
colors in most natural images prevents this discrete approach from
introducing noticeable discontinuities into a duotone.

The ink-spread transformation, like the luminance transformation,
can be any monotonically increasing function that maps thes-values
of image colors to the s-values available on the gamut. In what fol-
lows, we present both a simple linear mapping and a more complex
mapping based on Bézier curves.

Linear mapping

The simplest transformation of s-values is a linear mapping, which
we can define in a manner similar to the luminance transformation.
If we consider only colors within a particular luminance bin, the lin-

Y

S

P

Figure 5 Image colors before and after a non-uniform transforma-
tion in the ink-spread direction S.
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Figure 6 Two possible ink-spread transformations: (a) a linear mapping; (b) a Bézier curve mapping.
ear mapping is given by:

smin = min
i
fcS

i g

smax = max
i
fcS

i g

ŝmin = maxfsmin, minfŝ0, ŝ1gg

ŝmax = minfsmax, maxfŝ0, ŝ1gg

ĉS
i = ŝmin +

�
cS

i � smin

smax � smin

�
(ŝmax � ŝmin)

An example of a linear ink-spread transformation for a single lumi-
nance bin is illustrated in Figure 6(a).

Bézier-curve mapping

The linear mapping given above does not attempt to preserve thes-
values of image colors, despite the fact that many such values may
be available in the duotone gamut. Instead, the linear mapping pre-
serves the relationships betweens-values of the image colors. At the
other extreme, we could map each s-value to the closest value in the
interval of available values [ŝ0, ŝ1], thereby accurately reproducing
some colors while clamping others to the interval endpoints.

We are interested in obtaining some of the benefits of both these
alternatives. As a compromise, we construct a mapping based on
Bézier curves, as illustrated in Figure 6(b) for a typical luminance
bin.

In the interest of brevity, we will only describe the Bézier-curve
mapping qualitatively here. As with the linear mapping, the two
endpoints of the curve are constrained to map smin to ŝmin and smax

to ŝmax. However, because we are using two cubic Bézier curves that
meet with C1 continuity, we have five additional control points with
which we can alter the behavior of the mapping. These additional
degrees of freedom are utilized to meet the constraints that follow.

First, the slope of the Bézier-curve mapping at either end (controlled
by B0

1 and B1
1) is constrained to be zero, while the tangent at the mid-

dle of the curve (controlled by the segment B1
2 � B0

2) is constrained

P

S

Y

Figure 7 Image colors before and after being projected onto the duo-
tone gamut in the direction P.
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to be parallel to the line from B0
1 to B1

1. Together, these constraints
impose a nonlinearity on the mapping that tends to preserve separa-
tion of s-values for colors that are in gamut while squeezing together
the colors that are out of gamut. This approach strikes a balance be-
tween a linear mapping and an approach that clamps values.

Second, the center of the curve is constrained to pass through the
point B0

3 = B1
3, which is chosen to lie on the line ŝ = s so as to guar-

antee that s-values near the center of the mapping are preserved. We
determine the precise location of this center constraint by intersect-
ing the line from g0 to g1,2 with a plane of constant luminance ŷ. As a
result, the constraint at the center of the Bézier curves prevents col-
ors that are closer in hue to one ink from mapping to a color on the
opposite side of the gamut.

Our implementation of the Bézier-curve mapping relies on a lookup
table in order to efficiently transform a value cS

i to a new value ĉS
i .

The table corresponding to each luminance bin is calculated before
any colors are transformed. We evaluate a curve at a large number
of parameter values, and store the resulting (s, ŝ) coordinates in a
table. Then, to map a value cS

i we need only find the correct interval
of s-values and use linear interpolation to approximate the resultĉS

i .

3.3.3 Calculating the projection

Image colors transformed by the luminance and ink-spread map-
pings above are guaranteed to project onto the gamut in theP direc-
tion. The projection point corresponding to a color can be calculated
analytically by solving for the intersection of a line and the bilinear
surface defined by the Neugebauer equation. In the appendix, we
derive a solution for�1 and �2, the amounts of the two inks required
to produce the projected color. Thus, in addition to computing the
desired color, the projection step calculates the halftone separations
required for the duotone printing process. Figure 7 illustrates the
result of projecting a set of image colors onto a duotone gamut.

4 Selecting inks

The duotone mapping described in the previous section assumed
that two inks were given. Now we consider more general cases in
which neither ink or just one ink is specified by the user. Our goal is
to find a few good pairs of inks for a given image, in addition to find-
ing the halftone separations. We define a good pair of inks as one
for which the duotone mapping algorithm produces an image that is
as close as possible to the original full-color image. We define the
closeness of two images as the pixel-wise L2 distance measured in a
perceptually uniform color space. Thus, the selection of one or two
inks amounts to an optimization problem whose goal (or objective)
function is a function of the original image and two inks.

Simulated annealing is a heuristic optimization technique designed
to avoid local minima [18]. Transitions from the current state to an-



other state are generated randomly and accepted with some proba-
bility. This “acceptance probability” depends both on the relative
scores of the two states, as rated by the objective function, and on
the value of a control parameter T. Unfavorable moves are likely
when T is high but are accepted with decreasing probability as T
decreases. The “cooling schedule” describes the rate at whichT de-
creases and the number of moves made at each value ofT. In our
problem, a state consists of a pair of inks, each of which has a set
of neighbor inks. Taken together, the neighbor sets describe a fully
connected, symmetric graph. The set of legal moves from a state is
the set of all possible combinations of neighbor moves for each ink.

Simulated annealing is an ideal optimization technique for our par-
ticular problem. We require a heuristic technique because most in-
teresting ink sets, such as the PANTONER inks, contain hundreds
of inks. In addition, our preliminary experiments indicated that our
objective function has many local minima. Finally, the large num-
ber of parameters associated with simulated annealing allow us to
tune the optimizer to our needs. In particular, by adjusting the cool-
ing schedule and starting conditions, we can cause the optimizer to
find several relatively deep local minima instead of a single global
minimum. This adjustment is useful because it allows us to present
several alternative choices of ink pairs to the user.

Evaluating the objective function tends to be costly because it re-
quires that we transform every pixel color in the original image and
compare the resulting color to its original value. In order to solve the
optimization problem efficiently, the annealer uses a low-resolution
version of the color information present in the original image. Such
low-resolution information can be obtained either by quantizing the
colors in the original image or by reducing the size of the original
image. The low-resolution information is provided to the duotone
mapping step instead of the original image colors.

5 Variations

There are several variations on the basic algorithm that lead to im-
provements in the duotones of certain images.

5.1 Outlying clusters

In our implementation, clustering of image colors is performed as a
preprocessing step. Clusters of small size and large average distance
from other clusters are marked as outlying clusters. Colors that have
been identified as members of outlying clusters are ignored when
calculating the ink-spread transformation. The rationale is that such
colors matter less to the overall image, and that mapping them well
at the expense of more prevalent colors is not justified.

Colors that are ignored in calculating the ink-spread transformation
may not project onto the gamut. We transform each such color to a
gray of the appropriate luminance, and then project that gray onto
the gamut.

5.2 Black enhancement

Full-color printing relies on three colored inks—cyan, magenta, and
yellow—that combine to make black. However, a black halftone
separation is usually printed in addition to the three color separa-
tions. Adding a black separation permits denser blacks than three
colors can produce, allows more detail to be expressed in shadowed
areas, substitutes inexpensive black ink for more expensive colored
inks, and avoids a thick accumulation of ink [23, page 282].

Adding a black separation to duotone printing offers a further ben-
efit: for images with a wide range of luminance values, the two col-
ored inks no longer need to be chosen so that their combination is
6

close to black. Instead, the first two inks can be chosen to reproduce
the image’s hues, while the black ink permits fine gradations in lu-
minance.

Extending the duotone process to support a black separation is sim-
pler than the general problem of using three arbitrary inks (called a
tritone process), thanks to the nearly accurate assumption that com-
posing black ink with any other ink results in black. This assump-
tion simplifies the problem in two ways. First, whereas a general tri-
tone gamut is a trilinear volume according to the Neugebauer equa-
tions, a black-enhanced duotone is a volume bounded by four trian-
gles, (g0, g1, black), (g0, g2, black), (g1, g1,2, black), (g2, g1,2, black),
and one bilinear surface, as illustrated in Figure 8. Second, black
enhancement can be implemented as a simple extension to the duo-
tone algorithm using the following steps:

1. Subtract some amount of black from each color in the original
image.

2. Apply the optimization and duotone mapping algorithm to pro-
duce two color separations.

3. Calculate a black separation that adds back the appropriate
amount of black to each color.

These three steps are illustrated in Figure 9.

Removing black from an image in order to create a better duotone
is similar to the four-color process of under-color removal (UCR),
though slightly more complicated. Applying UCR to a color is fairly
simple: a fraction of the minimum component of cyan, magenta, and
yellow is removed from all three components, and then replaced by
an equal amount of black [13]. The success of this technique hinges
on the fact that cyan, magenta, and yellow combine to black, a prop-
erty that is not necessarily true for the two inks used in a duotone.

For duotones, removal of black from anRGB color c is performed by
moving c in a straight line away from the RGB position of black ink
to a new position c0, as shown in Figure 10(a). The amount of shift
depends on the color’s saturation: a fully saturated color does not
benefit from using any black, while a fully desaturated (gray) color
benefits most from using pure black ink. Performing this operation
on every color in the original image yields a new target image for
the duotone mapping.

Once we have applied the duotone mapping algorithm to obtain new
colors, we can compute how much black to use by comparing the
duotone colors to the original colors. Because we are primarily con-
cerned with preserving the luminance of image colors, our goal is to
match the luminance of the corresponding color in the original im-
age. We cannot reproduce the complete range of original luminance
values, though; instead we attempt to match a luminance scaled to
lie between that of the paper and that of the black ink. For each
color ĉ in our duotone, we create a line segment from that color
to the position of black ink. We then shift ĉ toward black until it
achieves the desired luminance at some position ĉ0, as illustrated in

g0

g1

g2

g1,2

black

Figure 8 The gamut of two inks and black.



Figure 9 Steps of black enhancement (counterclockwise from top left): original, original with black removed, duotone without black, and
duotone with black replaced.
Figure 10(b). The amount of shifting along the line through black
determines the amount of black to print.

5.3 Minimized hue difference

For some very colorful images, even the best duotone will not be
able to adequately reproduce all colors. Mapping an unachievable
original color to gray may produce a more pleasing duotone than
mapping it to another color. To achieve this effect we introduced
the idea of an optional second pass over the duotone, performed af-
ter the desired pair of inks is selected. During the second pass, we
perform a pixel-by-pixel comparison of the duotone and the original
image, calculating the perceptual hue difference of each pixel. Hues
are measured as hue angles in a perceptually uniform color space.
In both L�a�b� and L�u�v�, a plane perpendicular to the L� axis and
passing through a particular brightness value contains a disk of all
the hues present at that brightness, ranging from gray at the center to
saturated colors on the edge. Thus the hue angle of a color is defined
as huv = tan�1(v�=u�) or hab = tan�1(b�=a�) [4, page 65]. The per-
ceptual hue difference between two colors is the difference between
the hue angles of the colors.

Our algorithm for reducing hue differences proceeds by desaturating
(moving toward gray) each pixel in the original image by an amount
parameterized by the magnitude of the hue difference computed for
that pixel. The duotone mapping is then applied to the grayed-out
image. In addition to reducing offensive hue mappings, graying-out
parts of the original may improve the ink-spread transformation by
bringing smin and smax closer to ŝmin and ŝmax. Effectively, minimizing
hue difference treats some potentially significant image colors like
outliers, sacrificing them so that other colors will be mapped better.

black c c0

(a)

black ĉ0 ĉ

(b)

Figure 10 Transformations of black enhancement: (a) reducing
black of a color in the original image by moving away from black;
(b) replacing black in the duotone by moving toward black.
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5.4 Colored paper

The paper used in a duotone need not be white. For an input image
without much white, using a colored paper can greatly improve a
duotone reproduction by providing an additional color essentially
for free. Our implementation allows the user to specify a paper color
or leave the choice of paper up to the optimizer. We modified the
simulated annealing algorithm to select a paper color by extending
the definition of a state to include two inks and a paper.

It is important to note that the colors in a duotone surrounded by
an expanse of colored paper (as might occur in a yellow pages di-
rectory) appear quite different from the colors in the same duotone
printed to cover all of the paper (as in a postcard). The difference is
caused by adaptation effects in the visual system, which allow a sub-
tle color to be perceived as white when nothing perceptually closer
to white is present [22]. We are currently investigating quantitative
models of adaptation that might improve a duotone surrounded by
an expanse of colored paper.

6 Results

We have implemented an application that allows a user to create
duotone separations. In this section we discuss some details of our
implementation, as well as the results we obtained by printing duo-
tones on a two-color press.

6.1 Performance

Our naı̈ve implementation of the optimization loop takes approxi-
mately five minutes on a 133 MHz SGI Indy to find three good ink
pairs, using the clustered version of an image and an ink set of more
than 400 inks. While the optimization process is not interactive, it
only needs to be run once for a given image. For a 300�300 image,
producing full-size color separations and a preview duotone takes
approximately four seconds on the same machine.

6.2 Printing

Testing our method requires that we print duotones on an actual
printing press and compare the results to reference prints. While
ordinarily a reproduction should look as much as possible like a
photograph or an image displayed on a monitor, for the purposes



of this paper we chose to compare duotone prints to four-color pro-
cess prints. As a consequence, when we provide an input image to
our duotone mapping algorithm, its colors should be those that are
printed by a four-color press.

All of our original images are stored asRGB colors; in order to trans-
form those colors to match the colors obtained from a four-color
printing process, we use an RGB correction function. We gener-
ated data for the RGB correction by printing (on a four-color press)
a square for each color in a regular three-dimensional grid of col-
ors spanning the RGB cube. We scanned each printed square us-
ing a spectrophotometer and then converted the spectral data to an
RGB color. For this set of colors, we constructed a mapping from in-
tended RGB values to actual printed RGB values. Using piecewise-
trilinear interpolation between these discrete colors, we can trans-
form any given RGB color to the corresponding RGB color that pro-
cess printing would produce.

There is a second aspect of our color printing experiments that also
requires color correction. The Neugebauer model is not entirely ac-
curate in its prediction of colors obtained by halftoning two inks.
Therefore, in keeping with the empirical spirit of printing, we de-
veloped an empirical correction method for adjusting duotone sep-
arations. This duotone correction is similar to the RGB correction,
but we need to measure data for only two dimensions. Using the two
selected inks, we print a regular grid of values for�1 and �2. Once
again, we measure the RGB color of each square in the grid. Lo-
cating each measured RGB color on the duotone gamut associates
intended percentages with printed percentages of inks. Using bilin-
ear interpolation, we construct a mapping from intended amounts
to actual printed amounts. Applying the inverse of this function to
a pair of separations before printing compensates for the simplicity
of the Neugebauer model.

It should be noted that while the RGB transformation is valid for
all images, the duotone correction is only accurate for the particular
pair of inks that were measured. Since one of our goals is to make
printing duotones inexpensive and easy, we do not want to require
two trips to the printer. We therefore calculated an average correc-
tion function based on the duotone correction functions for three dif-
ferent pairs of inks. This average correction was used for most of the
results described below.

6.3 Examples

Example 1 depicts a painting by Cézanne printed with process inks
and as three duotones. The first two duotones, both printed with
black and gold, demonstrate the difference between the traditional
approach to printing duotones and our approach. (The traditional
duotone was created using Adobe PhotoshopTM.) The last image in
the series, printed with black and two inks selected by optimization,
demonstrates black enhancement.

Some very different images reproduce well using a single pair of
inks. Conversely, certain images reproduce well using several re-
markably different pairs of inks. Example 3 shows a photograph of
a koala printed in process color and as a duotone. Example 4 depicts
a painting by Renoir in process color and as two duotones. The first
duotone of the Renoir painting uses the same pair of user-selected
inks as the duotone of the koala photograph. Choosing an unrelated
pair of inks for the second duotone of the Renoir painting results in
a very different, but still successful reproduction.

Though skin tones are notoriously difficult to reproduce, pho-
tographs of people are not beyond the scope of two-color reproduc-
tion. Examples 4, 5, and 6 show three portrait photographs printed
in process color and as duotones. All three duotones are printed with
blue and orange-brown, inks that were selected by the optimizer for
the photograph in Example 4.
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Example 7 shows a photograph of a sunset in process color and as a
black-enhanced duotone printed with hand-picked inks. Viewed on
a monitor, the original image contains colors not present in the pro-
cess gamut. These colors are better achieved in a duotone that has
not undergone the correction described in the previous section. Us-
ing the same inks, we printed an uncorrected black-enhanced duo-
tone as the final image in the series.

Example 8 shows a painting by Schiele printed in process color and
as a duotone on yellow paper with optimizer-selected inks. Using
colored paper allows us to reproduce the three dominant hues (yel-
low, red, and green) present in the original image.

7 Discussion and future work

We have presented an algorithm for reproducing color images with
duotones. Our hope is that our approach will be of interest to the
desktop publishing community as a high-quality, economical alter-
native to full-color printing. While the limited number of examples
we have sent to a printing press may not be perfect reproductions of
the original images, they are certainly vast improvements over tra-
ditional duotones.

The core of our method is the duotone mapping: the transformation
of a set of scattered image colors onto a surface in three-dimensional
color space. Our mapping preserves relationships between image
colors at the expense of matching exact colors. One can imagine
many other mappings; below are some of the difficulties we found
with two alternate approaches:

� Finding the closest color. The obvious problem with the ap-
proach of mapping an image color to the closest point on the duo-
tone gamut is that out-of-gamut image colors will be clamped.
While clamping may be acceptable for certain images and duo-
tone gamuts, in general clamping results in artificial discontinu-
ities and a loss of information.

� Using orthogonal projection. Using orthogonal rather than par-
allel projection would complicate the ink-spread transformation,
making it a function of three variables rather than two: ŝ =
f (y, s, p). A more fundamental difficulty with orthogonal projec-
tion is the absence of an obvious continuous mapping, since there
are colors for which there is no orthogonal projection onto the
gamut.

Our research suggests several intriguing directions for future work.
Some of the methods presented in this paper might apply to the more
general problem of finding the best n inks with which to reproduce
an image. Our extension of the optimization algorithm to choose a
paper as well as inks suggests that we should adjust our algorithm to
take advantage of psychophysical effects such as von Kries adapta-
tion [22] and simultaneous contrast. These effects may allow us to
effectively expand the printing gamut by tricking the eye into seeing
colors that are not actually achievable.

Another possible extension to our implementation is a system that
facilitates the production of two-color brochures by optimizing over
images, inks, and papers. The system would take several images as
input and choose two inks, one paper, and a specified number of the
images that would reproduce well with the selected inks and paper.

Our algorithm has no sense of what parts of images are semanti-
cally or aesthetically important. Because the creation of a duotone
from an image frequently requires loss of color information, our al-
gorithm would benefit from user input indicating which colors in the
original image are most important to preserve. Finally, we are con-
sidering combining our duotone mapping algorithm with the artistic
screening approach to halftoning presented by Ostromoukhov and
Hersch [17].
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Appendix: Parallel projection onto a bilinear surface

Suppose we have a color c that we want to project in the direction P
onto a duotone gamut defined by the colorsg0, g1, g2, and g1,2. The
solution, which we will denote by ĉ, must lie on the line that passes
through c in the direction P, so we know ĉ = c + tP for some real
number t. The solution must also lie on the bilinear surface defining
the duotone gamut:

ĉ = c + tP =
�

g0 g1 g2 g1,2

�
2
64

(1 � �1)(1 � �2)
�1(1 � �2)
(1 � �1)�2

�1�2

3
75 (1)

for some values of�1 and �2. In what follows, we will solve for the
unknown ink amounts�1 and �2, rather than the projection point ĉ.

First, let’s rewrite equation (1) by grouping the terms differently:

g0�c� tP+(g1�g0)�1 +(g2�g0)�2 +(g0 +g1,2�g1�g2)�1�2 = 0

Notice that if we take the dot product of both sides of this equation
with either the S direction or the Y direction, we eliminate t because
P, S, and Y are defined to be mutually orthogonal. We can write the
two equations that result from these dot products as follows:

u1 + u2�1 + u3�2 + u4�1�2 = 0 (2)

v1 + v2�1 + v3�2 + v4�1�2 = 0 (3)

where the constants u1, : : : , u4 and v1, : : : , v4 are given by

u1 = (g0 � c) � S v1 = (g0 � c) � Y
u2 = (g1 � g0) � S v2 = (g1 � g0) � Y
u3 = (g2 � g0) � S v3 = (g2 � g0) � Y
u4 = (g0 + g1,2 � g1 � g2) � S v4 = (g0 + g1,2 � g1 � g2) � Y

Next, we can solve equation (2) for�2 in terms of �1 to get

�2 = �
u1 + u2�1

u3 + u4�1
(4)

When we substitute this expression for�2 into equation (3) and sim-
plify, we get a quadratic equation for�1 alone:

w1�
2
1 + w2�1 + w3 = 0

where w1 = u4v2 � u2v4

w2 = u4v1 � u1v4 + u3v2 � u2v3

w3 = u3v1 � u1v3

Therefore, the solution for �1 is given by

�1 =

8><
>:

�w2 �
p

w2
2 � 4w1w3

2w1
if w1 6= 0

�
w3

w2
if w1 = 0

When w1 6= 0, there are two possible projections of c onto the bi-
linear surface; we choose the solution for�1 that results in a value
between zero and one. Once we obtain�1, we can compute�2 from
equation (4) and the projection point ĉ from equation (1).
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